Slow components of potassium tail currents in rat skeletal muscle
نویسندگان
چکیده
The kinetics of potassium tail currents have been studied in the omohyoid muscle of the rat using the three-microelectrode voltage-clamp technique. The currents were elicited by a two-pulse protocol in which a conditioning pulse to open channels was followed by a test step to varying levels. The tail currents reversed at a single well-defined potential (VK). At hyperpolarized test potentials (-100 mV and below), tail currents were inward and exhibited two clearly distinguishable phases of decay, a fast tail with a time constant of 2-3 ms and a slow tail with a time constant of approximately 150 ms. At depolarized potentials (-60 mV and above), tail currents were outward and did not show two such easily separable phases of decay, although a slow kinetic component was present. The slow kinetic phase of outward tail currents appeared to be functionally distinct from the slow inward tail since the channels responsible for the latter did not allow significant outward current. Substitution of Rb for extracellular K abolished current through the anomalous (inward-going) rectifier and at the same time eliminated the slow inward tail, which suggests that the slow inward tail current flows through anomalous rectifier channels. The amplitude of the slow inward tail was increased and VK was shifted in the depolarizing direction by longer conditioning pulses. The shift in VK implies that during outward currents potassium accumulates in a restricted extracellular space, and it is suggested that this excess K causes the slow inward tail by increasing the inward current through the anomalous rectifier. By this hypothesis, the tail current slowly decays as K diffuses from the restricted space. Consistent with such a hypothesis, the decay of the slow inward tail was not strongly affected by changing temperature. It is concluded that a single delayed K channel is present in the omohyoid. Substitution of Rb for K has little effect on the magnitude or time course of outward current tails, but reduces the magnitude and slows the decay of the fast component of inward tails. Both effects are consistent with a mechanism proposed for squid giant axon (Swenson and Armstrong, 1981): that (a) the delayed potassium channel cannot close while Rb is inside it, and (b) that Rb remains in the channel longer than K.
منابع مشابه
Properties and expression of Ca2+-activated K+ channels in H9c2 cells derived from rat ventricle.
H9c2 is a clonal myogenic cell line derived from embryonic rat ventricle that can serve as a surrogate for cardiac or skeletal muscle in vitro. Using whole cell clamp with H9c2 myotubes, we observed that depolarizing pulses activated slow outward K+ currents and then slow tail currents. The K+ currents were abolished in a Ca2+-free external solution, indicating that they were Ca2+-activated K+ ...
متن کاملEffects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملCalcium currents in a fast-twitch skeletal muscle of the rat
Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current ap...
متن کاملVoltage dependent ionic currents in frog cultured skeletal myocytes.
The voltage dependent ionic currents in cultured embryonic skeletal myocytes at stages of development ranging from 1 to 6 day were studied using the whole-cell patch clamp technique. Sodium (INa) and calcium (ICa) inward and potassium (IK) outward currents were observed at all stages. INa did not differ from that described in adult frog striated muscle fibres. Slow ICa was mediated by current t...
متن کاملThe Effect of Intensive Endurance Activity on Myocyte Enhancer Factor 2C Gene Expression of Slow and Fast Twitch Muscles in Male Wistar Rats: An Experimental Study
Background and Objectives: Myocyte enhancer factor 2c activates the genes of the slow-twitch muscle, the muscle which plays role in endurance activity. Therefore, the aim of this study was to evaluate the effect of a program of intensive endurance activity on MEF2c gene expression in fast and slow twitch skeletal muscles in wistar rats. Materials and Methods: In this experimental study, 14 mal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 81 شماره
صفحات -
تاریخ انتشار 1983